% \f is defined as #1f(#2) using the macro \f\relax{x} = \int_{\infty}^\infty\f\hat\xi\,e^{2 \pi i \xi x}\,d\xi
\sum \bigcup_{\alpha \dot{\grave{}}}^{}
\pi=3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{292+…}}}}
% \f is defined as #1f(#2) using the macro \f\relax{x} = \int_{\infty}^\infty\f\hat\xi\,e^{2 \pi i \xi x}\,d\xi
\sum \bigcup_{\alpha \dot{\grave{}}}^{}
\pi=3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{292+…}}}}
2 Responses
dfgdfgd
kjhkhkhkjhjkkjh